rand/distributions/
other.rs

1// Copyright 2018 Developers of the Rand project.
2//
3// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
4// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
5// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
6// option. This file may not be copied, modified, or distributed
7// except according to those terms.
8
9//! The implementations of the `Standard` distribution for other built-in types.
10
11use core::char;
12use core::num::Wrapping;
13#[cfg(feature = "alloc")]
14use alloc::string::String;
15
16use crate::distributions::{Distribution, Standard, Uniform};
17#[cfg(feature = "alloc")]
18use crate::distributions::DistString;
19use crate::Rng;
20
21#[cfg(feature = "serde1")]
22use serde::{Serialize, Deserialize};
23#[cfg(feature = "min_const_gen")]
24use core::mem::{self, MaybeUninit};
25
26
27// ----- Sampling distributions -----
28
29/// Sample a `u8`, uniformly distributed over ASCII letters and numbers:
30/// a-z, A-Z and 0-9.
31///
32/// # Example
33///
34/// ```
35/// use rand::{Rng, thread_rng};
36/// use rand::distributions::Alphanumeric;
37///
38/// let mut rng = thread_rng();
39/// let chars: String = (0..7).map(|_| rng.sample(Alphanumeric) as char).collect();
40/// println!("Random chars: {}", chars);
41/// ```
42///
43/// The [`DistString`] trait provides an easier method of generating
44/// a random `String`, and offers more efficient allocation:
45/// ```
46/// use rand::distributions::{Alphanumeric, DistString};
47/// let string = Alphanumeric.sample_string(&mut rand::thread_rng(), 16);
48/// println!("Random string: {}", string);
49/// ```
50///
51/// # Passwords
52///
53/// Users sometimes ask whether it is safe to use a string of random characters
54/// as a password. In principle, all RNGs in Rand implementing `CryptoRng` are
55/// suitable as a source of randomness for generating passwords (if they are
56/// properly seeded), but it is more conservative to only use randomness
57/// directly from the operating system via the `getrandom` crate, or the
58/// corresponding bindings of a crypto library.
59///
60/// When generating passwords or keys, it is important to consider the threat
61/// model and in some cases the memorability of the password. This is out of
62/// scope of the Rand project, and therefore we defer to the following
63/// references:
64///
65/// - [Wikipedia article on Password Strength](https://en.wikipedia.org/wiki/Password_strength)
66/// - [Diceware for generating memorable passwords](https://en.wikipedia.org/wiki/Diceware)
67#[derive(Debug, Clone, Copy)]
68#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
69pub struct Alphanumeric;
70
71
72// ----- Implementations of distributions -----
73
74impl Distribution<char> for Standard {
75    #[inline]
76    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char {
77        // A valid `char` is either in the interval `[0, 0xD800)` or
78        // `(0xDFFF, 0x11_0000)`. All `char`s must therefore be in
79        // `[0, 0x11_0000)` but not in the "gap" `[0xD800, 0xDFFF]` which is
80        // reserved for surrogates. This is the size of that gap.
81        const GAP_SIZE: u32 = 0xDFFF - 0xD800 + 1;
82
83        // Uniform::new(0, 0x11_0000 - GAP_SIZE) can also be used but it
84        // seemed slower.
85        let range = Uniform::new(GAP_SIZE, 0x11_0000);
86
87        let mut n = range.sample(rng);
88        if n <= 0xDFFF {
89            n -= GAP_SIZE;
90        }
91        unsafe { char::from_u32_unchecked(n) }
92    }
93}
94
95/// Note: the `String` is potentially left with excess capacity; optionally the
96/// user may call `string.shrink_to_fit()` afterwards.
97#[cfg(feature = "alloc")]
98impl DistString for Standard {
99    fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, s: &mut String, len: usize) {
100        // A char is encoded with at most four bytes, thus this reservation is
101        // guaranteed to be sufficient. We do not shrink_to_fit afterwards so
102        // that repeated usage on the same `String` buffer does not reallocate.
103        s.reserve(4 * len);
104        s.extend(Distribution::<char>::sample_iter(self, rng).take(len));
105    }
106}
107
108impl Distribution<u8> for Alphanumeric {
109    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 {
110        const RANGE: u32 = 26 + 26 + 10;
111        const GEN_ASCII_STR_CHARSET: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
112                abcdefghijklmnopqrstuvwxyz\
113                0123456789";
114        // We can pick from 62 characters. This is so close to a power of 2, 64,
115        // that we can do better than `Uniform`. Use a simple bitshift and
116        // rejection sampling. We do not use a bitmask, because for small RNGs
117        // the most significant bits are usually of higher quality.
118        loop {
119            let var = rng.next_u32() >> (32 - 6);
120            if var < RANGE {
121                return GEN_ASCII_STR_CHARSET[var as usize];
122            }
123        }
124    }
125}
126
127#[cfg(feature = "alloc")]
128impl DistString for Alphanumeric {
129    fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize) {
130        unsafe {
131            let v = string.as_mut_vec();
132            v.extend(self.sample_iter(rng).take(len));
133        }
134    }
135}
136
137impl Distribution<bool> for Standard {
138    #[inline]
139    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
140        // We can compare against an arbitrary bit of an u32 to get a bool.
141        // Because the least significant bits of a lower quality RNG can have
142        // simple patterns, we compare against the most significant bit. This is
143        // easiest done using a sign test.
144        (rng.next_u32() as i32) < 0
145    }
146}
147
148macro_rules! tuple_impl {
149    // use variables to indicate the arity of the tuple
150    ($($tyvar:ident),* ) => {
151        // the trailing commas are for the 1 tuple
152        impl< $( $tyvar ),* >
153            Distribution<( $( $tyvar ),* , )>
154            for Standard
155            where $( Standard: Distribution<$tyvar> ),*
156        {
157            #[inline]
158            fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> ( $( $tyvar ),* , ) {
159                (
160                    // use the $tyvar's to get the appropriate number of
161                    // repeats (they're not actually needed)
162                    $(
163                        _rng.gen::<$tyvar>()
164                    ),*
165                    ,
166                )
167            }
168        }
169    }
170}
171
172impl Distribution<()> for Standard {
173    #[allow(clippy::unused_unit)]
174    #[inline]
175    fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () {
176        ()
177    }
178}
179tuple_impl! {A}
180tuple_impl! {A, B}
181tuple_impl! {A, B, C}
182tuple_impl! {A, B, C, D}
183tuple_impl! {A, B, C, D, E}
184tuple_impl! {A, B, C, D, E, F}
185tuple_impl! {A, B, C, D, E, F, G}
186tuple_impl! {A, B, C, D, E, F, G, H}
187tuple_impl! {A, B, C, D, E, F, G, H, I}
188tuple_impl! {A, B, C, D, E, F, G, H, I, J}
189tuple_impl! {A, B, C, D, E, F, G, H, I, J, K}
190tuple_impl! {A, B, C, D, E, F, G, H, I, J, K, L}
191
192#[cfg(feature = "min_const_gen")]
193#[cfg_attr(doc_cfg, doc(cfg(feature = "min_const_gen")))]
194impl<T, const N: usize> Distribution<[T; N]> for Standard
195where Standard: Distribution<T>
196{
197    #[inline]
198    fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; N] {
199        let mut buff: [MaybeUninit<T>; N] = unsafe { MaybeUninit::uninit().assume_init() };
200
201        for elem in &mut buff {
202            *elem = MaybeUninit::new(_rng.gen());
203        }
204
205        unsafe { mem::transmute_copy::<_, _>(&buff) }
206    }
207}
208
209#[cfg(not(feature = "min_const_gen"))]
210macro_rules! array_impl {
211    // recursive, given at least one type parameter:
212    {$n:expr, $t:ident, $($ts:ident,)*} => {
213        array_impl!{($n - 1), $($ts,)*}
214
215        impl<T> Distribution<[T; $n]> for Standard where Standard: Distribution<T> {
216            #[inline]
217            fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] {
218                [_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*]
219            }
220        }
221    };
222    // empty case:
223    {$n:expr,} => {
224        impl<T> Distribution<[T; $n]> for Standard {
225            fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { [] }
226        }
227    };
228}
229
230#[cfg(not(feature = "min_const_gen"))]
231array_impl! {32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,}
232
233impl<T> Distribution<Option<T>> for Standard
234where Standard: Distribution<T>
235{
236    #[inline]
237    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<T> {
238        // UFCS is needed here: https://github.com/rust-lang/rust/issues/24066
239        if rng.gen::<bool>() {
240            Some(rng.gen())
241        } else {
242            None
243        }
244    }
245}
246
247impl<T> Distribution<Wrapping<T>> for Standard
248where Standard: Distribution<T>
249{
250    #[inline]
251    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Wrapping<T> {
252        Wrapping(rng.gen())
253    }
254}
255
256
257#[cfg(test)]
258mod tests {
259    use super::*;
260    use crate::RngCore;
261    #[cfg(feature = "alloc")] use alloc::string::String;
262
263    #[test]
264    fn test_misc() {
265        let rng: &mut dyn RngCore = &mut crate::test::rng(820);
266
267        rng.sample::<char, _>(Standard);
268        rng.sample::<bool, _>(Standard);
269    }
270
271    #[cfg(feature = "alloc")]
272    #[test]
273    fn test_chars() {
274        use core::iter;
275        let mut rng = crate::test::rng(805);
276
277        // Test by generating a relatively large number of chars, so we also
278        // take the rejection sampling path.
279        let word: String = iter::repeat(())
280            .map(|()| rng.gen::<char>())
281            .take(1000)
282            .collect();
283        assert!(!word.is_empty());
284    }
285
286    #[test]
287    fn test_alphanumeric() {
288        let mut rng = crate::test::rng(806);
289
290        // Test by generating a relatively large number of chars, so we also
291        // take the rejection sampling path.
292        let mut incorrect = false;
293        for _ in 0..100 {
294            let c: char = rng.sample(Alphanumeric).into();
295            incorrect |= !(('0'..='9').contains(&c) ||
296                           ('A'..='Z').contains(&c) ||
297                           ('a'..='z').contains(&c) );
298        }
299        assert!(!incorrect);
300    }
301
302    #[test]
303    fn value_stability() {
304        fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>(
305            distr: &D, zero: T, expected: &[T],
306        ) {
307            let mut rng = crate::test::rng(807);
308            let mut buf = [zero; 5];
309            for x in &mut buf {
310                *x = rng.sample(&distr);
311            }
312            assert_eq!(&buf, expected);
313        }
314
315        test_samples(&Standard, 'a', &[
316            '\u{8cdac}',
317            '\u{a346a}',
318            '\u{80120}',
319            '\u{ed692}',
320            '\u{35888}',
321        ]);
322        test_samples(&Alphanumeric, 0, &[104, 109, 101, 51, 77]);
323        test_samples(&Standard, false, &[true, true, false, true, false]);
324        test_samples(&Standard, None as Option<bool>, &[
325            Some(true),
326            None,
327            Some(false),
328            None,
329            Some(false),
330        ]);
331        test_samples(&Standard, Wrapping(0i32), &[
332            Wrapping(-2074640887),
333            Wrapping(-1719949321),
334            Wrapping(2018088303),
335            Wrapping(-547181756),
336            Wrapping(838957336),
337        ]);
338
339        // We test only sub-sets of tuple and array impls
340        test_samples(&Standard, (), &[(), (), (), (), ()]);
341        test_samples(&Standard, (false,), &[
342            (true,),
343            (true,),
344            (false,),
345            (true,),
346            (false,),
347        ]);
348        test_samples(&Standard, (false, false), &[
349            (true, true),
350            (false, true),
351            (false, false),
352            (true, false),
353            (false, false),
354        ]);
355
356        test_samples(&Standard, [0u8; 0], &[[], [], [], [], []]);
357        test_samples(&Standard, [0u8; 3], &[
358            [9, 247, 111],
359            [68, 24, 13],
360            [174, 19, 194],
361            [172, 69, 213],
362            [149, 207, 29],
363        ]);
364    }
365}